SU DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE SYLLABUS (Tentative) COSC 220 Computer Science II

Description: A study of the design and implementation of abstract data types and algorithms using an object-oriented approach and standard class library. Attention will be paid to the introduction of data structures such as linked lists, vectors, stacks, queues, priority queues, lists, trees, etc.; searching and sorting algorithms and their runtime analysis. C++ is the teaching language. Three one-hour lectures and one two-hour lab per week.

Prerequisite: Computer Programming (COSC 120) or equivalent with a grade of C or better and Discrete Mathematics (MATH 210) or equivalent with a grade of C or better. MATH 210 may be taken concurrently.

Required Text: "Starting Out with C++," by Tony Gaddis; Pearson/Addison Wesley, 9th Edition. ISBN: 978034498379.

	Week
Pointers & Arrays	1.0
Review pointers, passing pointers as parameters, relation between pointers and arrays,	
dynamic memory allocation, arrays of pointer types	
Advanced Recursion	1.0
Recursive algorithms and functions	
Linked Lists	2.0
Introduce singly-linked and doubly-linked lists and their manipulation	
Data Structures	2.0
Introduce vectors, stacks, queues (include priority queues) and their manipulation	
through their APIs	
Data Structure Implementation	1.5
Discuss implementation of vector, stack, queue, list using pointer-based array and/or	
linked lists	
Sorting Algorithms	1.5
Introduce algorithms for insertion sort, mergesort, quicksort, radix sort, etc. with arrays	
Algorithm Efficiency Analysis	1.0
Introduce asymptotic notations (big-O, big- Ω , big- Θ) and basic related theorems,	
perform runtime analysis on searching and sorting algorithms	
Advanced Concepts in Object-oriented Programming	2.0
Introduce inheritance, polymorphism, abstract classes, virtual functions, static and	
dynamic binding	
Optional Topics	1.0
Introduce trees, hash tables, heaps and other data structures	1.0
Test	1.0
	1.0
	14.0

EVALUATION

Homework, labs, projects, class participation, presentation: 30-50% Tests, final exam, and quizzes: 50-70 %

NOTE: ONCE A STUDENT HAS RECEIVED CREDIT, INCLUDING TRANSFER CREDIT, FOR A COURSE, CREDIT MAY NOT BE RECEIVED FOR ANY COURSE WITH MATERIAL THAT IS EQUIVALENT TO IT OR IS A PREREQUISITE FOR IT.