COSC 420 HIGH PERFORMANCE COMPUTING (Tentative)

Description: The course will study principles, practices, and implementations of parallel and distributed computing. It covers three areas of high performance computing: modern computing architectures, algorithm design, and applications and programming. Through this course, students will not only learn fundamental concepts of high performance computing but also gain hands-on hardware and programming experience in this field.

Prerequisite: Computer Science II (COSC220), Microcomputer Organization (COSC250); each with a grade of C or better

Credits: 4 units

Required Text: Using MPI: Portable Parallel Programming with the Message-Passing Interface (3E), by Gropp, Lusk, and Skjellum, 2014.

"Programming Massively Parallel Processors: A Hands-on Approach",

D.Kirk and W. Hwu, Morgan Kaufmann, 2010

References:

•

• "MPICH User's Guide", Pavan Balaji, et al., 2015	
(https://www.mpich.org/static/downloads/3.1.4/mpich-3.1.4-userguide.pdf)	
• "The Debian Administrator's Handbook", Raphaël Hertzog, Roland Mas, 2013	
(https://www.debian.org/doc/manuals/debian-handbook/)	
TOPICS	Weeks
Introduction to High Performance Computing	2.0
Limits of Sequential Computing, Concurrency and Performance Analysis Flynn's Classical Taxonomy: SISD/SIMD/MISD/MIMD	
Parallel Processing, Memory Architecture, Modern Supercomputing Multistage Interconnection, Shared Memory: UMA/ NUMA, Distributed Memory, Hybrid Memory	2.0
Distributed Systems and High Performance Computing (HPC) The HPC Stack, Grid Computing, Cloud Computing, Job Scheduling, Load-Balancing	2.0
HPC Design and Construction Linux HPC as Supercomputing platform, HPC Stack implementation on ARM and i686 Architectures (via commodity hardware: Raspberry Pi and desktop PC), Network Engineering, Administration, Security, Monitoring	5.0
Parallel Programming Model and Algorithm Design Principles Programming Models and Languages; Message Passing; Data Parallel Algorithm Design,	4.0

Decomposition, Dependency; Multi-Thread Programming in Python/POSIX; Parallel programming with OpenMP/MPI

Tests 1.0 EVALUATION Presentations, Labs, Programs, and Projects 70% Tests and Final Exam 30%

REC