SU DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE SYLLABUS (Tentative)

MATH 105 Liberal-Arts Mathematics: Statistics through Baseball

Objective: In general, to introduce students to the role of mathematics in culture. Specifically in this offering, to explore the concepts of probability and statistics through the lens of baseball.

Intended for: Students whose major areas of study do not have specific requirements in mathematics, who want to learn elementary probability and statistics, and who have an interest in baseball.

Prerequisite: Three years of high-school mathematics, including geometry, or intermediate algebra at a college (MATH 100).

Text: *Teaching Statistics Using Baseball*, by Jim Albert; The Mathematical Association of America. 10th Edition.

Reference: A First Course in Statistics (any edition from the eighth on), by James T. McClave and Terry Sincich (Prentice Hall).

Topic

An Introduction to Baseball Statistics

Mathematical fundamentals: sets and functions. Probabilistic fundamentals: frequency- and probability-distributions. Statistical fundamentals: populations and samples, means and proportions. Baseball fundamentals: basic measures of performance, and their relation to common statistical measures.

Exploring a Single Batch of Baseball Data

Teams' offensive statistics: stem-and-leaf displays and the Five-Number Summary. A tribute to Cal Ripken: dotplots, time-series plots, and curve-fitting. A tribute to Greg Maddux or Randy Johnson; summary statistics and comparison of distributions. Analyzing baseball attendance: histograms. The use of sacrifice-bunts: comparing distributions.

Comparing Batches and Standardization

"Slugging percentages are normal": normal probability distributions. Great batting averages and standardized scores. Does Tom Glavine or Vladimir Guerrero deserve to be in baseball's Hall of Fame?

Introduction to Probability Using Tabletop Games

"What was Barry Bonds's home-run probability?": the relative-frequency interpretation of probability and the Law of Large Numbers. Big-League Baseball: sample spaces, equiprobable outcomes. All-Star Baseball: probability as area, multinomial experiments. Strat-O-Matic Baseball: theorems of probability; conditional probability.

Probability Distributions and Baseball

Binomial distributions and hits per game: binomial probabilities, independence, expected counts, and simulation. Modeling runs scored: Negative-binomial distributions and Pearson Residuals.

Introduction to Statistical Inference

Ability and performance. Simulating a batter's performance: Bernoulli Trials, Bayes' Rule. Intervalestimates for ability: confidence-intervals; subjective probability. Comparing Wade Boggs and Tony Gwynn: confidence-interval estimates for proportions, time-series plots.

Topics in Statistical Inference

Observed situational effects for many players. Modeling batting averages for many players: normal distributions.

Optional topics, as time permits

Relationships between sets of measurements. A new measure of offensive performance. Are batting slumps inevitable? Are seven-game playoff series fairer than five-game ones? Modeling baseball with Markov Chains.

"The Fourth Credit"

Baseball, the award-winning 27-hour Ken Burns documentary shown on the Public Broadcasting Service television network, will be viewed by the students and discussed in class.

EVALUATION Homework and class-participation 30 - 70% Midterm Examination 0 - 20% Project 30 - 70% Final Examination 0 - 20% Weeks

2

2

2

1

2

2

2

1

14