SALISBURY UNIVERSITY DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE SYLLABUS (Tentative) MATH 300 Introduction to Abstract Mathematics

Intended Audience: Students minoring in mathematics, particularly prospective teachers, will find this course a good capstone to their undergraduate mathematical experience. Students majoring in mathematics who have not already completed a 400-level mathematics course will find this a valuable course to help them develop a better understanding of the connection between computational and theoretical mathematics.

Objective: To provide students with an opportunity to develop the foundations of abstract mathematics.

Prerequisite: MATH 210 (or equivalent) completed with a grade of C or better.

Text: "Mathematical Reasoning: Writing and Proof," version 2.1, by Ted Sundstrom. Available as a *free* PDF download from <u>https://www.tedsundstrom.com/mathreasoning</u>

Topics	Weeks	
Logic and Proof Methods of proof – direct, contraposition, contradiction, induction; logical operators; logical equivalence; logical negation; recursion	3	
Sets and Functions Set theory; properties of functions; compositions of functions; Inverse functions; functions acting on sets	3	
Equivalence Relations Relations; equivalence classes; modular arithmetic	2	
Number Theory Division algorithm; greatest common divisor; prime factorization; Euclidean algorithm; Diophantine equations; congruence	3	
Finite and Infinite Sets Cardinality; countable and uncountable sets; Cantor's Diagonal Argument	2	
Tests	1	
Total	14	

EVALUATION

Homework: 20-30% Tests: 20-30%

]	Boardwork:	20-30%
]	Final Exam:	20-30%

Additional notes:

- This course complies with Salisbury University's Writing Across the Curriculum expectations. Students will be expected to effectively communicate mathematics and mathematical ideas in writing.
- Once a student has received credit, including transfer credit, for a course, credit may not be received for any course with material that is equivalent to it or is a prerequisite for it.