SU DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE SYLLABUS (Tentative) MATH 306 Linear Algebra

Objectives: To develop the theory of vectors, matrices, and inner products, with emphasis on concepts and techniques used in geometry and physics.

Prerequisite: A second course in Calculus (MATH 202).

Text: "Linear Algebra and Its Applications," by David C. Lay; Addison-Wesley Publishing Company, 5th Edition.

Chapter 1 Linear Equations	Hours 14
Systems of linear equations: existence, uniqueness, elementary row operations; Gauss-Jordan ror reduction and echelon forms; vector equations; linear independence; linear transformations; appl of linear systems.	
Chapter 2Matrix AlgebraMatrix operations; inverse of a matrix; characteristics of invertible matrices; subspaces of Rn.	9
Chapter 3 Determinants Introduction to determinants; properties of determinants; Cramer's rule, volume, and linear transformations.	5
Chapter 4 <i>Vector Spaces</i> Vector spaces and subspaces; null spaces, column spaces, and linear transformations; linearly ine sets and bases; coordinate systems; dimensions of a vector space; rank.	6 dependent
Chapter 5Eigenvalues and EigenvectorsEigenvectors and eigenvalues; the characteristic equation; diagonalization, eigenvectors & linear transformations, complex eigenvalues	7
Chapter 6Orthogonality and Inner ProductInner product, length, and orthogonality; orthogonal sets; orthogonal projections.	6
<i>Optional Topics, Review, Tests, Group Work</i> Including, but not restricted to: Eigenvectors and linear transformations; complex eigenvalues; Gram-Schmidt process; least square problems; applications in computer graphics.	<u>9</u>
EVALUATION	56
Tests 40-50%	

Tests 40-50% Homework/Projects 20-40% Final exam 20-30%

NOTE: ONCE A STUDENT HAS RECEIVED CREDIT, INCLUDING TRANSFER CREDIT, FOR A COURSE, CREDIT MAY NOT BE RECEIVED FOR ANY COURSE WITH MATERIAL THAT IS EQUIVALENT TO IT OR IS A PREREQUISITE FOR IT.

MJB/jlh