SU DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE SYLLABUS (Tentative) MATH 402/512 Theory of Numbers

OBJECTIVES: To study some of the fundamental topics of classical number theory while developing techniques of proof associated with this discipline.

PREREQUISITE: MATH 210 and/or MATH 306 (both recommended).

TEXT : "Elementary Number Theory," by David M. Burton; McGraw-Hill Publishing Company, 7th Edition, 2011.	
Preliminaries Mathematical induction; Binomial Theorem; early number theory	Weeks 1.0
<i>Divisibility Theory in the Integers</i> Division algorithm; greatest common divisor; Euclidean Algorithm; Diophantine Eq	1.5 uations
Primes and Their Distribution Fundamental Theorem of Arithmetic; Sieve of Eratosthenes; Goldbach Conjecture	1.0
<i>Theory of Congruences</i> Basic properties of congruence; binary and decimal representations; divisibility tests congruences; the Chinese Remainder Theorem	1.0 ; linear
<i>Fermat's Theorem</i> Fermat's Little Theorem; pseudoprimes; Wilson's Theorem; Fermat-Kraitchik Facto Method	1.5 rization
Number-Theoretic Functions The functions σ and τ ; Möbius Inversion Formula; greatest integer function	1.0
<i>Euler's Generalization of Fermat's Theorem</i> Euler's phi-function; Euler's Theorem; Properties of Euler's phi-function	1.0
<i>Primitive Roots and Indices</i> The order of an integer modulo n; primitive roots; theory of indices	1.0
<i>The Law of Quadratic Reciprocity</i> Quadratic Congruences; The Legendre Symbol; Quadratic Reciprocity	2.0
Additional Topics (as time permits)2.0Possible topics include: cryptography; perfect and amicable numbers; Fermat numbers; Fermat's Last Theorem; Sums of Squares; Fibonacci Numbers; Continued Fractions2.0	

Tests

EVALUATION

5-15%
15-25%
15-25%
20-30%
25-35%

Graduate students will be assigned special or additional homework/test problems or projects.

NOTE: ONCE A STUDENT HAS RECEIVED CREDIT, INCLUDING TRANSFER CREDIT, FOR A COURSE, CREDIT MAY NOT BE RECEIVED FOR ANY COURSE WITH MATERIAL THAT IS EQUIVALENT TO IT OR IS A PREREQUISITE FOR IT.

KEL

1/2018