SALISBURY UNIVERSITY DEPARTMENT OF MATHEMATICS & COMPUTER SCIENCE SYLLABUS MATH 441/561 Abstract Algebra

Objectives: To develop the foundations for modern algebra. The primary focus will be on constructing proofs and writing in mathematics. The standard theory of a second semester algebra course will be presented.

Intended for: All majors in the mathematical sciences and any students who wish to pursue graduate study in mathematics or its applications, physics or computer science.

Prerequisite: MATH 306 and/or MATH 210 (both recommended).

Text: Abstract Algebra: An Introduction, 3rd Edition by Thomas W. Hungerford

	Weeks
Topic 1 <i>Basic Notions</i> Sets, functions; binary operations; modular arithmetic.	1
Topic 2 <i>Rings</i> Mathematical theory of a rings, subrings, integral domains, fields, and division ring; interconnections between these algebraic structures; commutative and noncommutative zero divisors; characteristic and other fundamental ring theoretic topics.	3 rings;
Topic 3 <i>Polynomials</i> Polynomials; the division algorithm; factorization; units; associates; unique factorization domains.	2.5
Topic 4 <i>Ideals and Quotient Rings</i> Ring homomorphisms; ideals; quotient rings; homomorphism theorem for rings; quotier polynomial rings.	3 nts of
Topic 5 <i>Groups</i> Definition; elementary properties including cancellation laws, uniqueness of the identity inverses; unique solvability of linear equations; subgroups and subgroup tests; orders of elements; cyclic groups; modular systems; abelian groups; permutation groups, includin alternating and symmetric groups, cycle notation, and transpositions; dihedral groups an applications to symmetry.	g the

Tests

1

14

EVALUATION Tests 30-40% Homework 30-40% Final exam 20-30%

**Graduate students will be assigned special or additional homework/test problems/projects. NOTE: ONCE A STUDENT HAS RECEIVED CREDIT, INCLUDING TRANSFER CREDIT, FOR A COURSE, CREDIT MAY NOT BE RECEIVED FOR ANY COURSE WITH MATERIAL THAT IS EQUIVALENT TO IT OR IS A PREREQUISITE FOR IT.