SALISBURY UNIVERSITY DEPARTMENT OF MATHEMATICS & COMPUTER SCIENCE SYLLABUS MATH 442/562 Abstract Algebra

Objectives: To develop the foundations for modern algebra. The primary focus will be on constructing proofs and writing in mathematics. The standard theory of a second semester algebra course will be presented.

Intended for: All majors in the mathematical sciences and any students who wish to pursue graduate study in mathematics or its applications, physics or computer science.

Prerequisite: MATH 441 with a grade of C or better.

Text: Abstract Algebra: An Introduction, 3rd Edition by Thomas W. Hungerford

v	Veeks
Topic 1 <i>Review of Groups</i> Definition; subgroups; symmetric group; examples.	1
Topic 2 <i>Structure of Groups</i> Cayley's Theorem; cosets; Lagrange's Theorem; Fundamental Theorem of Finite Abelian Groups; homomorphisms; isomorphisms; normal subgroups and kernels of homomorphisms automorphisms; quotient groups; homomorphism theorem for groups; direct products.	4 s;
Topic 3 <i>Field Extensions</i> Abstract vector spaces; extension fields; finite fields.	3
Topic 4 <i>Galois Theory</i> Introduction to Galois theory; applications to solvability of polynomials; solvability by radio the insolvability of the quintic; impossible geometric constructions.	4 cals;
Topic 5 <i>Addition Topics</i> Additional topics may include Galois theory, module theory, computational algebraic geometry Sylow theorems, group actions, and other related topics.	1 etry,
Tests	1
	14

EVALUATION

Tests 30-40% Homework 30-40% Final exam 20-30%

NOTE: ONCE A STUDENT HAS RECEIVED CREDIT, INCLUDING TRANSFER CREDIT, FOR A COURSE, CREDIT MAY NOT BE RECEIVED FOR ANY COURSE WITH MATERIAL THAT IS EQUIVALENT TO IT OR IS A PREREQUISITE FOR IT.

^{**}Graduate students will be assigned special or additional homework/test problems/projects.